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91191 Gif-sur-Yvette Cedex, France
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Abstract
We argue that the critical dynamical fluctuations predicted by the mode-
coupling theory (MCT) of glasses provide a natural mechanism to explain
the breakdown of the Stokes–Einstein relation. This breakdown, observed
numerically and experimentally in a region where MCT should hold, is one
of the major difficulties of the theory, for which we propose a natural resolution
based on the recent interpretation of the MCT transition as a bona fide critical
point with a diverging length scale. We also show that the upper critical
dimension of MCT for liquids is dc = 8.

Mode-coupling theory (MCT) provides a useful theoretical framework to account for many
of the empirical properties of liquids, at least in the weakly supercooled region [1, 2]. There
are, however, a number of well known difficulties with the theory, the most prominent being
the absence, in real systems, of the dynamical arrest singularity predicted by MCT. This very
singularity underlies most of the quantitative predictions of MCT, such as the divergence of
the relaxation time, the power-law shape of the correlator in the β region, or the critical
behaviour of the non-ergodic (Edwards–Anderson) parameter q [1]. Additional activated
relaxation processes, not described by MCT, have to be invoked to argue that the MCT
transition temperature Tc should be understood as a cross-over rather than a true singularity.
In the region between Tc and the so-called onset temperature, Tonset, where the slow dynamics
regime sets in [3], MCT fares quite well to describe a host of experimental and numerical results
with one noticeable exception: the breakdown of the Stokes–Einstein relation. This breakdown
is one of the most important aspects of the phenomenology of supercooled liquids. The Stokes–
Einstein relation states that the product of the viscosity η times the self-diffusion constant D,
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divided by the temperature is a constant independent of temperature. This relation is well
obeyed in liquids at high enough temperature. Instead, in supercooled liquids Dη/T increases
quite sharply below Tonset [4] and eventually reaches values of the order of 1000 or more at
the glass temperature Tg [5]. In other words, the self-diffusion of particles becomes much
faster than structural relaxation. The decoupling between viscosity and diffusion is interpreted
by many to be a direct piece of evidence for dynamical heterogeneities in glassy liquids [5].
Intuitively, this decoupling comes about because diffusion is dominated by the fastest particles
whereas structural relaxation is dominated by the slowest regions [5]. Detailed explanations
based on different theoretical approaches have been put forward in the literature [6–9]. In
most models, the breakdown of the Stokes–Einstein relation is in fact a direct measure of the
width of the distribution of local relaxation times (see below and [5–9]). Standard MCT does
not account for the sharp increase of Dη/T between Tonset and Tc although this is precisely
the region where MCT is supposed hold. The aim of this short contribution is to discuss an
explicit mechanism that leads to such a breakdown within the mode-coupling theory of glasses,
once critical fluctuations are taken into account. The arguments presented in the main body
of the paper are rather qualitative and we relegate more technical (diagrammatic) details to the
appendix. These calculations are not needed to understand our physical results, but clarify the
origin of conflicting claims made in previous publications [11, 23].

In its usual interpretation, MCT describes homogeneous dynamics and neglects all
fluctuations; it therefore seems that any effect associated with dynamical heterogeneities
is outside the scope of MCT. However, this pessimistic view was recently argued to be
erroneous [10–13] (see [14, 15] for earlier insights). MCT should in fact be seen as a
standard mean-field theory, except that it provides a self-consistent equation for the two-body
dynamical correlation function (describing density fluctuations) rather than for a one-body
order parameter, such as the magnetization in the usual Curie–Weiss theory of magnets. In
the latter case, we know that the appearance of a non-trivial solution of the mean-field equation
below a certain critical temperature is in fact associated with the divergence of the magnetic
susceptibility, itself related to magnetization fluctuations. These fluctuations are harmless in
high enough dimensions, but become dominant in dimension space less than four, where all
critical properties of the phase transition are strongly affected by these fluctuations. The same
scenario, although more involved, also holds for MCT [11]: above a certain dimension dc,
MCT is expected to be quantitatively accurate (at least in a regime where the above mentioned
activated events can be neglected), whereas for d < dc, dynamical fluctuations play a major
role and must be properly accounted for. In this case, fluctuations of the (two-body) dynamical
correlation are measured through a four-body correlation G4(�r , t); its integral over space
defines, in analogy with ferromagnets, a dynamical susceptibility called χ4(t) in the recent
literature [16–18]. The extension of MCT to compute G4(�r , t) reveals that χ4 indeed diverges
as the mode-coupling temperature Tc is approached [11, 12]. This indicates that the dynamics
becomes correlated over larger and larger length scales as the system freezes, which is in fact
expected on general grounds: a diverging relaxation time should necessarily involve an infinite
number of particles4. The growth of χ4 has recently been detected in numerical simulations
and experimentally in supercooled liquids [16, 17, 20] and in granular media [21]; it should
also transpire in the divergence of the non-linear susceptibility of glassy systems [22].

As discussed in [11] the spatial correlations underlying the mode-coupling singularity
necessarily lead to the existence of an upper critical dimension dc for this problem. In [11]
it was shown that in the early β-relaxation regime, the four-point correlator reads, in Fourier
space, Ĝ4(�k, t ≈ τβ) ∼ (k2 + √

ε)−1, where ε = (T − Tc)/Tc. From this, one can estimate,

4 A rigorous proof for a large class of glassy systems has been presented in [19].
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in the spirit of a Ginzburg argument [11], the fluctuations of the non-ergodic parameter q in
a region of size ξ ∼ ε−1/4 to find ξdδq ∼ ξd+2/2. Imposing that δq must be much smaller
than the critical behaviour predicted by MCT, i.e. qc − q ∼ √

ε, one finds that this assumption
is only consistent when d > dc = 6. For d < 6, the fluctuations become dominant for ε

small enough and change all the critical exponents. But most interestingly, as we will argue
below, these fluctuations are also responsible for the breakdown of the Stokes–Einstein relation.
Before doing so, we should, however, point out that the analysis of [11] in fact overlooked a
contribution due to the coupling between dynamic fluctuations and slow conserved degrees
of freedom such as density and energy fluctuations [23]. These fluctuations, close enough to
the transition, become the leading ones and change the above mean-field critical behaviour of
Ĝ4 to Ĝ4(�k, t ≈ τβ) ∼ (k2 + √

ε)−2 [23]. In this case, the fluctuations of the non-ergodic
parameter in a region of size ξ grow as ξd+4/2, which becomes dominant below the critical
dimension dc = 8.5 A diagrammatic derivation of this upper critical dimension is presented in
the appendix. Note that in reality the situation is more complicated: from numerical simulations
of Lennard-Jones systems [23] one finds that fluctuations due to slow conserved degrees of
freedom only become dominant very close to the transition, where MCT breaks down. For
colloids, where MCT fares rather well, we do not yet have quantitative estimates of the relative
contribution of these fluctuations. It might therefore well be that in cases of experimental or
numerical interest, the original analysis of BB holds and the effective upper critical dimension
is dc = 6. In any case, the aim of the present paper is not to obtain quantitative predictions
but only to showing that critical dynamical MCT fluctuations provide a natural scenario for the
decoupling of self-diffusion and viscosity.

In principle, the contribution of critical fluctuations to the viscosity and diffusion constant
should be calculated using a renormalization group around dc. Here, we do not attempt to do
this but argue physically that such a programme should lead to a decoupling between these
two quantities. We assume that non-trivial critical exponents describe, in d < dc, the different
physical quantities; for example ξ ∼ ε−ν , qc − q ∼ εβ , τ ∼ ε−γ and G4(�r) ∼ g(r/ξ)/rd−4+η.
Mode-coupling theory describes how the random potential created by density fluctuations slows
down the particles. Close to the MCT transition, this self-generated random potential persists
on a timescale comparable to the one responsible for structural relaxation. Hence, it acquires
a static component that self-consistently traps the particles at the MCT transition, where the
relaxation timescale diverges. The strength of this self-generated component, and hence of
the trapping potential, is measured by the plateau value q of the correlation function, which
therefore acts as an effective coupling constant. When q reaches qc, the random potential is
sufficiently strong to prevent the particles from moving. Clearly, activated effects are expected
to destroy the transition (any finite potential barrier can be overcome in finite time), but within
MCT these processes are neglected.

The local difference between q and qc therefore plays a major role: if the local value
of q is slightly smaller, particles are less trapped and diffusion is enhanced. If, on the other
hand, the local value of q is slightly larger, particles are frozen6. In other words, the self-
generated disorder fluctuates in space and leads to fluctuations of the critical temperature on
correlated regions of linear size ξ .7 Since the (local) relaxation time is set by the distance from
the (local) critical temperature, the dynamics strongly fluctuates from one correlated region
to another. This is precisely why the fluctuations of the local correlation function, measured

5 The analysis of [11] is strictly speaking correct for models that are characterized by a dynamics without conserved
quantities. An example is a finite-dimensional p-spins model for which the upper critical dimension is therefore dc = 6.
6 This means that the local Debye–Waller factor is expected to be strongly correlated by the propensity of the particles
to diffuse, as indeed was recently found numerically in [24, 38].
7 See [25] for a discussion of the role of critical temperature fluctuations in disordered systems.
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by G4(�r , t), play a crucial role in generating strong dynamical heterogeneities. Parallel to the
Ginzburg argument, the fluctuations (per particle) of the non-ergodic parameter in a region of
size ξ ∼ ε−ν are given by δq ∼ ξ (4−d−η)/2 ∼ ε−ν(4−d−η)/2, to be compared with qc − q ∼ εβ .
These fluctuations of the effective coupling constant in turn induce local fluctuations of the
relaxation time as:

δτ

τ
= γ

β

δq

qc − q
∼ ε

ν(d+η−4)

2 −β . (1)

For d > dc, the mean-field value of the exponents ν = 1/4, β = 1/2 can be used, and one
finds that δτ/τ → 0 close to the MCT transition: dynamical heterogeneities are mild and
do not jeopardize the Stokes–Einstein relation, as predicted by MCT calculations that neglect
spatial fluctuations altogether. Interestingly, this conclusion does not hold for d < dc, where
the relative width of the local relaxation time distribution must increase as ε → 0. For ε not too
small, one can still use the mean-field value of the exponents, but now the fluctuations of local
relaxation times are found to increase as δτ/τ ∼ ε−(dc−d)/4, before one enters the Ginzburg
region, where fluctuations eventually change the values of the exponents. For standard phase
transitions, the hyperscaling relation ν(d + η − 2) − 2β = 0 is such that fluctuations remain of
order one when ε → 0. Its generalization to the MCT transition would be ν(d+η−4)−2β = 0.
However, it is not clear whether within MCT hyperscaling holds since the MCT transition is
purely dynamical, and has a mixed first order/second order nature (qc is non-zero at T = Tc

while the relaxation time is diverging as a power law). A detailed renormalization group study
of the replica field theory with a cubic term could help to settle this interesting technical point.
In any case, we expect that in three dimensions, neglecting the role of the activated processes
(that cut off the transition) and entering in the regime where the dynamics is supposed to slow
down because of the MCT critical point (i.e. between Tonset and Tc) δτ/τ should first grow as ε

decreases, and either saturate or diverge as ε → 0, depending on the validity of hyperscaling.
As already discussed, a key ingredient that generates violation of the Stokes–Einstein

relation is the fluctuation of the local relation timescale τ . Different models capture this effect.
For instance, assuming as in [7] local fluctuations of the diffusion coefficient one finds that
the Stokes–Einstein violation is related to the ratio between 〈1/τ 〉 and 1/〈τ 〉. Another model
consists in assuming that particles hop with random relaxation times. In this case the self-
diffusion coefficient is given by D = �2/〈τ 〉, where � is the typical hopping distance, expected
to be of the order of the particle size and roughly temperature independent. The viscosity,
or the terminal relaxation time, on the other hand, are given by the integral of the average
correlation function, which weighs slow regions proportionally to the local relaxation time;
therefore η ∼ 〈τ 2〉/〈τ 〉. In both models the crucial ingredient to evaluate violation of the
Stokes–Einstein relation is indeed local fluctuations of the relaxation times. For example, for
the latter model one gets:

Dη

KSET
∝ 1 + 〈(δτ )2〉/〈τ 〉2 ∼ 1 + Cεν(d+η−4)−2β , (2)

where C is a numerical constant of order unity and KSE is the high temperature value of
Dη/T . For d < dc, this formula predicts an increasing decoupling between viscosity and
diffusion between Tonset and Tc. If C is not too small, we predict a power-law viscosity–
diffusion decoupling as Tc is approached, with exponents that change as one enters the Ginzburg
region. Such a behaviour may have been observed in numerical simulations of Lennard-Jones
particles [2], where Dη/T is found to increase by a factor of ∼5 in the MCT region [4], while
MCT predicts an increase of a mere 1.2 [2, 29]. These results are interesting because they show
that both the viscosity and the inverse diffusion constant can be made to scale relatively well
with ε = (T − Tc)/Tc with the same Tc for both quantities, but with different exponents. In
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other words, this scenario is compatible with a ‘fractional’ Stokes–Einstein relation, D ∼ η−k

with k < 1. More precisely, the numerical results are η ∼ ε−2.4, whereas D ∼ ε1.8, so
that Dη ∼ ε−0.6 (see [4] and references therein). These results suggest that the observed
breakdown of the Stokes–Einstein relation might indeed be related to critical fluctuations. A
similar breakdown of the Stokes–Einstein relation in the mode-coupling region has also been
observed in hard sphere systems, both experimentally [26] and numerically [29, 30]. Of course,
much stronger violations are observed closer to Tg, but outside the region where MCT can be
valid. These should be related to the broadness of activated relaxation time distributions and
are outside the scope of the present discussion8.

Summarizing this short contribution, we have argued that a dramatic consequence, in
low space dimensions, of the critical dynamical fluctuations predicted by the mode-coupling
theory of glasses is the breakdown of the Stokes–Einstein relation. This breakdown, observed
numerically and experimentally in a region where MCT should hold, i.e. above Tc, is one of
the major difficulties of MCT (setting aside other well known difficulties related to activated
processes), and for which we provide a natural interpretation. We believe that this matter
deserves more investigation, both

• theoretically, to estimate the value of the exponents describing this breakdown in d <

dc and to analyse the interplay between activated processes and critical dynamical
fluctuations;

• and numerically and/or experimentally to ascertain the connection between dynamical
fluctuations and viscosity–diffusion decoupling in the T > Tc region, for example by
comparing the location τ and the width δτ of the peak of the four-point susceptibility
χ4(t).

Numerically one could also test the dimensional dependence of Stokes–Einstein violation, and
compare it with other scenarios, such as suggested by kinetically constrained models which
also predict such violations [31]. If confirmed, those effects would be a direct proof of the
importance of critical fluctuations in glasses. This would put the programme of extending
MCT using renormalization group methods on top of the agenda.
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Appendix

In the following we show that below eight dimensions there are infrared divergences that change
the mean-field scaling derived in BB and [23].

The natural framework to analyse critical dynamical fluctuations and their role in
determining the upper critical dimension is dynamical field theory. The starting point to analyse
the dynamics of super-cooled liquids consists in writing down some exact or phenomenological
stochastic equations for the evolution of the slow conserved degrees of freedom. Field theories
are obtained through the Martin–Siggia–Rose–deDominicis–Janssen method, where one first
introduces response fields enforcing the correct time evolution and then averages over the

8 Note, however, that activated events play a role at long times even above Tc, and might thus be at least partly
responsible for the decoupling [27, 28].
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G G = Figure A.1. Diagrammatic representation of the

parquet diagrams. �k denotes the wavevector entering
into the ladders.

Σ
n
m

n m

k Figure A.2. Diagrammatic representation of the squared-
parquet diagrams. �k denotes the wavevector entering into
the ladders.

stochastic noise [33]. Standard MCT corresponds to a self-consistent one-loop approximation
(see [34–36] for a discussion of the different field theories and subtleties appearing in the
derivation of MCT).

Here we do not provide any detail and we refer to [23, 34] for a thorough presentation.
We only recall that generically the four-point function can be written in terms of the so-
called parquet diagrams (see [37] for a general introduction and [23] for an application to
supercooled liquids). As shown in [23] the four-point function can be exactly expressed as a
sum of parquet and ‘squared-parquet’ diagrams (we will use the same notation as [23]) (see
figures A.1 and A.2).

The elementary block used to construct the parquet diagrams corresponds to [δ�/δG]GG
where � is the self-energy considered as a function of the dressed propagator G, see [23]. MCT
consists in retaining only the bubble diagram for the self-energy. In this case the elementary
block is very simple and leads to the ladder diagrams studied in BB and [23], which lead to the
mean-field scaling discussed in the main text. The diagram in figure A.1 gives a contribution
to G4(k, t) that, for times t in the β regime and for small k, has a critical behaviour like
1/(k2 + √

ε). The diagram in figure A.2, on the other hand, gives a contribution that has a
critical behaviour like 1/(k2 + √

ε)2.
From the point of view of critical phenomena, one expects that adding diagrams other

than the bubbles to the self-energy should be harmless and should not change the scaling for
all dimensions larger than the upper critical dimension dc. In order to show that this is the
case and determine dc one has to prove that (1) adding any type of diagram to the bubbles
does not change the MCT (mean-field) critical properties in the presence of an infrared cut-off
on momenta integration and (2) equating the infrared cut-off to zero leads to a change of the
mean-field scaling only below the upper critical dimension dc. The first part of this procedure is
lengthy and difficult and it will be shown elsewhere [32]. Concerning the second part, we shall
only show an example of diagrams that are responsible for changing the mean-field scaling
below eight dimensions. (A full analysis showing that above eight dimensions all diagrams are
harmless is outside the scope of this paper and is left for future work.)

In order to show an example of a divergent diagram below eight dimensions one has to
focus on the elementary block [δ�/δG]GG used to construct the parquets. The small k
behaviour of this block determines the MCT mean-field scaling discussed above (k is the

6
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k k

q

q–k

Figure A.3. Divergent diagram below eight
dimensions assuming mean-field scaling. One box
represents the parquet diagram shown in figure A.1.
Note that the lines on the left have to be considered
without propagators.

momentum entering into the block as shown in figures A.1 and A.2). Within MCT, and more
generally if one puts an infrared cutoff, one finds a scaling k2 + √

ε at small k. One can show
that this assumption is inconsistent in low enough dimension, focusing on an explicit diagram
(see figure A.3).9

In order to do that, we shall assume that the mean-field scaling is correct and compute the
small-k behaviour of this diagram. In dimensions less than dc, the corresponding contribution to
[δ�/δG]GG at small k will be found to differ from mean field. For the diagram in figure A.3,
the small-k dependence is given by (we omit the dependence on the non-critical wavevectors):

I (k, ε) ∼
∫

1

(q2 + √
ε)2

1

(q − k)2 + √
ε

dd q.

For ε = 0 the small-k behaviour is then given by I (0, 0) + ck2 + · · · where I (0, 0) and c
are two well defined constants above eight dimensions (that can be explicitly computed from
I (k, ε)). I (0, 0) and c lead, respectively, to a renormalization of the critical temperature and
of the ‘rigidity’ constant in front of the k2 term in G4. However, below eight dimensions, c
diverges (if the infrared cutoff vanishes) and the behaviour of I (k, 0) is singular at small k:
I (0, 0) + c′k2−(8−d) + · · ·. This clearly shows that the assumption of mean-field scaling is not
correct. In order to go further and compute the non-mean-field exponents one should perform
a renormalization group treatment, or some self-consistent (mode-coupling!) re-summation of
these dangerous diagrams. We leave this for further investigations.

As a conclusion we find, in agreement with the simple Ginzburg argument developed in
the main text, that below eight dimensions critical fluctuations are not governed by mean-field
theory.

Finally, we remark that for a system with no conserved degrees of freedom, as is the
case for the Langevin dynamics of disordered p-spin systems, squared-parquet diagrams are
absent. Therefore the divergent diagram corresponding to the one in figure A.3 is now formed
by single parquets both on the top and bottom parts of the diagram. Repeating the same analysis
performed above, one finds dc = 6 in this case, as found in BB.
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